
ACCESSING MEMORY
Dr. Russ Meier

MEMORY BUSSES

• The CPU creates three numerical memory busses

• An address bus requests access to memory locations
• A data bus is used to move data between the CPU and the memory
• A control bus contains signals controlling the memory chips

CPU

ADDRESS BUS

CONTROL BUS

DATA BUS MEMORY

MEMORY BUSSES

• Control signals coordinate data movement using a bus protocol

• Declare address validity so memories know the address bus contains a correct number
• Declare direction of transfer using a read/write or a memory load signal

• Control speed of data flow using clock signals or other flow control signals

CPU

ADDRESS BUS

CONTROL BUS

DATA BUS MEMORY

INTEL 8086 MEMORY BUS

Source: Intel 8086 Datasheet, September 1990

ARM MEMORY BUS

Source: ARM7TDMI Technical Reference Manual, 2004

CACHE MEMORY

• Fabricated on CPU silicon die

• Multiple levels of cache exist

• This image is the Apple A9

• Dual-core ARMv8 CPU

• Level 1 and Level 2 in CPU Core

• L3 on-chip

• Accessed by the memory bus

MAIN MEMORY

• This example shows a full
32-bit 4GB address space
using four 1GB memories.

• Each memory provides its byte
at the specified address.

• Since four-bytes are provided,
the memory is 32-bit aligned.

• Note that the upper 30 address
bits specified the desired word.

DBUS[31..24]MEMORY 3

MEMORY 2

MEMORY 1

MEMORY 0

ABUS[31..2]

ABUS[31..2]

ABUS[31..2]

ABUS[31..2]

DBUS[23..16]

DBUS[15..8]

DBUS[7..0]

ABUS[31..0]

1G x 8 RAM

1G x 8 RAM

1G x 8 RAM

1G x 8 RAM

4GB x 8 SINGLE IN-LINE MEMORY MODULE

MAIN MEMORY

• This example shows a DDR2
256MiB single in-line memory
module (SIMM) for a personal
computer.

• DDR2 uses a 64-bit data bus.

• Each chip is 32MiB of storage.

• Each chip provides its byte in
the 64-bit word.

• 32MiB x 8 = 256MiB

LOAD AND STORE INSTRUCTIONS

• ARM accesses memory as a
large array of 32-bit numbers.

• Consider the Java code:

j = A[0]

• The load-register instruction
implements this equation as:

R[Rd] MEM[Rn,#0]

ADDRESS DATA WORD

0x80000000 0xAB94C600

0x80000004 0xBADCAB02

0x80000008 0x01234567

0x8000000C 0x000FF99B

0x80000010 0xFEDCBA98

An array of five integers
stored in memory

MOV R4,#0x80000000

LDR R0,[R4,#0]

REGISTER VALUE

R0 0xAB94C600

R1

R2

R3

R4 0x80000000

R4 is a memory address
R4 is a “pointer” into memory

R4 is a “reference” to the memory location

LOAD AND STORE INSTRUCTIONS

• ARM allows an index of 0 to be
omitted in assembly language.

• Consider the Java code:

j = A[0]

• The load-register instruction
implements this equation as:

R[Rd] MEM[Rn]

ADDRESS DATA WORD

0x80000000 0xAB94C600

0x80000004 0xBADCAB02

0x80000008 0x01234567

0x8000000C 0x000FF99B

0x80000010 0xFEDCBA98

An array of five integers
stored in memory

MOV R4,#0x80000000

LDR R0,[R4]

REGISTER VALUE

R0 0xAB94C600

R1

R2

R3

R4 0x80000000

R4 is a memory address
R4 is a “pointer” into memory

R4 is a “reference” to the memory location

LOAD AND STORE INSTRUCTIONS

• Consider the Java code:

j = A[3]

• The load-register instruction
implements this equation as:

R[Rd] MEM[Rn,#12]

ADDRESS DATA WORD

0x80000000 0xAB94C600

0x80000004 0xBADCAB02

0x80000008 0x01234567

0x8000000C 0x000FF99B

0x80000010 0xFEDCBA98

An array of five integers
stored in memory

MOV R4,#0x80000000

LDR R0,[R4,#12]

REGISTER VALUE

R0 0x000FF99B

R1

R2

R3

R4 0x80000000

R4 is a memory address
R4 is a “pointer” into memory

R4 is a “reference” to the memory location

LOAD AND STORE INSTRUCTIONS

• In this example, R4 is the pointer.

• R4 can also be called the base address.

• The displacement is 12.

• The final memory address is calculated as
base address + displacement. The final
memory address is called the effective
memory address.

ADDRESS DATA WORD

0x80000000 0xAB94C600

0x80000004 0xBADCAB02

0x80000008 0x01234567

0x8000000C 0x000FF99B

0x80000010 0xFEDCBA98

An array of five integers
stored in memory

MOV R4,#0x80000000

LDR R0,[R4,#12]

R4 is a memory address
R4 is a “pointer” into memory

R4 is a “reference” to the memory location

ADDRESSING MODE

• We have now seen three addressing modes in class.

ADDRESSING MODE EXAMPLE ADDRESS IN MEMORY PSEUDO-CODE

Literal MOV R4,#10 None needed INT J = 10

Base LDR R4,[R2] R2 + 0 INT J = A[0]

Base with displacement LDR R4,[R2,#16] R2 + 16 INT J = A[4]

Base with displacement is also called
base with offset

ENCODING LDR AND STR INSTRUCTIONS

EXAMPLE ADDRESSING MODE INDEX MODE MEMORY ADDRESS OP 𝑰 P U B W L

LDR R4,[R5,R6] BASE + OFFSET PRE-INDEX ADD R6 R5 + R6 01 1 1 1 0 0 1

LDR R4,[R5] BASE + OFFSET PRE-INDEX ADD #0 R5 01 0 1 1 0 0 1

LDR R4,[R5,#12] BASE + OFFSET PRE-INDEX ADD #12 R5 + 12 01 0 1 1 0 0 1

STR R4,[R5,#-20] BASE + OFFSET PRE-INDEX ADD #-20 R5 – 20 01 0 1 0 0 0 0

These are the only types of LDR and STR used in CE1921

ENCODING LDR AND STR INSTRUCTIONS

ARM Data Sheet Image
Showing Encoding Format

